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Abstract

Microbes exist naturally in a wide range of environments, spanning the extremes of high 

acidity and high temperature to soil and the ocean, in communities where their 

interactions are significant.  We present a practical discussion of three different 

approaches for modeling microbial communities: rate equations, individual-based 

modeling, and population dynamics.  We illustrate the approaches with detailed examples.  

Each approach is best fit to different levels of system representation, and they have 

different needs for detailed biological input.  Thus, this set of approaches is able to 

address the operation and function of microbial communities on a wide range of 

organizational levels.
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1. Introduction

Microorganisms contribute a considerable fraction of the living biomass on Earth.  

While traditional studies of microbes have been based on the isolation and laboratory 

cultivation of pure species, relatively little is known about an estimated >99% of 

environmental microbes due to their difficulty of cultivation under standard laboratory 

conditions.  In fact, the vast majority of microbes naturally only occurs and thrives when 

in microbial communities:  there is frequently a synergistic partitioning of metabolic 

function between different microbial species (Ram, 2005).  The recent development of 

techniques to probe microorganisms in their natural environments, such as metagenomic 

sequencing, has uncovered an unanticipated level of phylogenetic diversity and valuable 

insights into lifestyle and metabolic capabilities of microbial communities occupying a 

broad range of environmental niches (Breitbart, 2002; Venter, 2004; Tyson, 2004).  

The function and operation of microbial communities has received significant interest 

with the introduction of these new technologies.  There is also a growing realization that 

microbes contribute extensively to important environmental questions such as carbon 

sequestration and nitrogen cycling.  It has been proposed that microbes and microbial 

communities may provide novel avenues for the degradation of lignocellulosic material 

and, thus, the generation of biofuels.  Recently, new findings indicate that the activity and 

composition of microbial communities in e.g. the intestine is of direct relevance to human 

obesity (Turnbaugh 2006), and revisiting the activity of pathogens, such as Vibrio 

cholera, from the community context has revealed surprising insight with immediate 

consequences for generating clean drinking water (Colwell 2003).  Questions related to 



the function and interaction of microbial consortia has therefore taken a place of 

prominence in the current science literature.

In this chapter, we will address three methods that have proven useful in modeling the 

behavior of microbial communities.  These methods have different requirements for the 

level of detail needed to model a multi-cellular microbial system.  The first method we 

will discuss is based on representing a microbe by rate equations, requiring the highest 

level of detail.  Not surprisingly, this approach has been limited in applicability due to the 

lack of measured kinetic parameters.  However, it seems plausible that this drawback will 

be significantly tempered in the near future.  We will then describe individual-based 

approaches (often called agent-based modeling) capable of simulating the interaction of 

multiple microbes with a relatively narrow set of variables.  While the focus is still on the 

individual microbes, this method is capable of addressing the spatial aggregation of large 

populations.  We will complete this chapter with a discussion of population dynamics 

modeling, a method for which the species is the focal point.  This class of approaches has 

become well known through the Lotka-Volterra representation of a predator prey system 

(Lotka 1925; Volterra 1926).

2.  Rate-equation models

2.1 Background
For good reasons, all developed genome-level models of microbial metabolism are 

based on the assumption that the system is at steady-state (see the chapter on Flux-

Balance Analysis).   Although steady-state models (SSM) have shown great utility for 

assessing the metabolic capabilities of an organism, they ignore a number of crucial 

details needed to attain greater insights into the dynamics of a cell.  For example:



• After an environmental or genetic perturbation, SSM only characterize the new 

steady-state.  SSM do not calculate how long it will take for the system to reach 

the new steady-state and visited intermediary states.

• SSM ignore enzymatic capacity and thus cannot identify rate-limiting steps and 

metabolic bottlenecks.

• SSM do not account for the concentration of intermediates and thus cannot predict 

deleterious buildup of toxic metabolites.

Development of genome-scale kinetic models can overcome these failings; however, 

currently such undertakings are impractical.  In order to develop a kinetic model of 

cellular metabolism, we must account for the time-dependent changes in metabolite 

concentrations. This requires the knowledge of a large number of kinetic parameters.  

Unfortunately, while recently developed analytical tools have accelerated genetic and 

proteomic analyses immensely, measurements of enzymatic kinetic parameters are still 

tedious and time consuming.  

Kinetic models are usually developed only for well-studied pathways, such as central 

carbon metabolism in Escherchia coli (Chassangole et al. 2002), Urea cycle in Rattus 

norvegicus (Maher et al. 2003), and glycolysis in a variety of organisms ranging from 

single cell organisms such as Saccharomyces cerevisiae (e.g. Selkov 1968, Teusink et al. 

2000, Hynne et al. 2001, Zhadnov& Kasemo 2001, for a review see Klipp 2007) and 

Trypanosoma brucei (Bakker et al. 2000, Navid & Ortoleva 2004) to cells from organs 

such as skeletal muscle (Smolen 1995) and pancreatic β-cells (Westermark & Lansner 

2003).  Despite their limited metabolic scope, these models have been invaluable in 

enhancing our understanding of the complex collective dynamics of cellular groupings.  



2.2 Theory and Methodology

Perhaps the most important question that one should consider prior to developing a 

kinetic model is: “How detailed should the model be?”  The answer to this question is 

directly related to other questions that have to be answered early in the modeling process.  

For example:  

• What kinetic parameters are available? 

• Is it possible to bypass or generalize certain details of a pathway and still develop 

a sufficiently predictive model (see e.g. Dano et al. 2006)?

• Which reactions are reversible and which are irreversible?  

• Which metabolites can be transported across the cellular membrane?  Are these 

processes passive or active (i.e. require energy expenditure)?  Are they facilitated 

by chaperones or are they non-facilitated?

• What is the volume and surface area of a cell, and should the model account for 

changes to these physical characteristics?

These questions can be answered through a thorough examination of the available 

literature, and searching through databases such as BRENDA (www.brenda-

enzymes.info).  These answers will also determine how the dynamics of metabolic 

reactions are formulated.

Developing kinetic models of metabolic pathways involves writing the concentration 

changes of each metabolite as ordinary differential equations (ODEs).  For example, 

given the two metabolic reactions:

DCBA kQ →→←+ 2 and C



where Q is the equilibrium constant equal to the ratio of forward and reverse reaction 

coefficients (k1/k-1). The change in concentration of the metabolites is written as:
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By thus writing and solving similar ODEs for all metabolites, we may monitor the 

dynamic changes that occur in a microbe.  

2.3 Examples 

2.3.1 Coupling of glycolytic oscillations in Saccharomyces cerevisiae

One of the most studied problems of cellular nonlinear dynamics has been the 

coupling and synchronization of metabolic oscillators, such as the Baker/Brewer’s yeast, 

Saccharomyces cerevisiae.  The initial reports of glycolytic oscillation with a frequency 

of several minutes in cell-free extracts of yeasts date back to 1964 (Chance et al. 1964).  

Prolonged oscillations in biochemical systems require that at least one of the reactions 

obey nonlinear kinetics. Thus, it is not surprising that asynchronous (Markus & Hess 

1984, Wolf & Heinrich 1997) and even chaotic (Markus et al. 1985, Goldbetter 1996) 

dynamics have been proposed.  A large number of theoretical studies have examined 

oscillatory behavior in glycolysis, particularly in yeasts (for a review see Patnaik 2003).

The majority of theoretical studies involve the coupling of only a few metabolic 

pathways (eg. Wolf & Heinrich 1997a,b, Zhadnov and Kasemo 2001a), and the 

interaction is mediated through a common extracellular pool of metabolites that can be 



imported to and/or exported from different cells.  In the case of S. cerevisiae suspensions, 

acetaldehyde (Acld) has been identified as the primary coupling metabolite (Richard 

1996).  

2.3.1.1 Glycolysis oscillations and synchronization

The model of glycolysis in yeast was designed with the criterion that it should 

describe the observed experimental observations (Richard et al. 1996a,b).  A schematic of 

the modeled system is presented in Figure 1.  The characteristics of the model are:

• Several chemical steps are lumped together, such as reactions catalyzed by 

hexokinase and phosphofructokinase (PFK) (v1) and multi-step conversions of 

dihydroxyacetone phosphate to glycerol (Gly) (v3) and 3-phosphoglycerate (3PG) 

to pyruvate (Pyr) (v7).

• Simulation is for anaerobic conditions with ethanol (Etoh) as the major product.

• Concentrations of Gly and Etoh are considered constant (reservoir).  Import of 

glucose and export of Acld are the only modeled extracellular fluxes: Import of 

glucose (I) is assumed constant, and transport of Acld (X) is modeled as passive 

diffusion dependent on the concentration gradient of Acld across the membrane:

where A and V are the surface area and volume of the cell respectively.  J is the 

coefficient of permeability of the cellular membrane for Acld.  c and m denote 

cytosolic and medium concentrations.

• Consumption of ATP by the cell is accounted for by an ATPase reaction.  

Intracellular pools of adenine nucleotides (ATP and ADP) and nicotinamide 



adenine dinucleotides (NAD+ and NADH) are conserved:

and [NAD+]+[NADH]=NTotal.

• All reaction considered irreversible, except for glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) (v4) and phosphoglycerate kinase (PGK) (v5).

• Reactions catalyzed by GAPDH and PGK are near equilibrium (QGAPDH=0.0056, 

QPGK=3225 (Bergmeyer 1974)), justifying a quasi-steady-state approximation for 

1,3-bisphosphoglycerate (13BPG), thus And since,

we can write the equation for concentration of 13BPG as

Thus, the combined reaction equation for v4 and v5 becomes:

• Simple rate laws are used for all enzymatic reactions (see Table 1).

• The only regulatory behavior that is accounted for is the inhibitory effect of ATP 

on the hexokinase-PFK reaction (v1) using Ki and n as the inhibition constant and 

cooperativity coefficient for ATP respectively:

• Metabolites are distributed homogenously in the cytosolic and external medium.



2.3.1.2 Transduction of oscillations

The model can used to study the mechanism of intracellular propagation of nonlinear 

dynamics.  It is reasonable to assume that when nonlinear dynamics are transmitted down 

the main backbone of the glycolytic pathway, the amplitude of substrates should be 

greater than that of the products it produces (Richard et al. 1996), i.e. each enzymatic step 

dampens the oscillations.  Not surprisingly, a series of simulations has shown that 

oscillations in glycolysis can be transmitted throughout the cell via the cofactors ADP

and NAD.

As a follow up, Wolf and coworkers (Wolf et al. 2001b) examined whether it is 

possible for cells to synchronize their oscillating dynamics if oscillations are not 

propagated through the backbone of the glycolytic pathway.  To this end, cells of yeast 

with identical kinetic capabilities, but different concentrations of metabolites, were 

coupled together via a shared extracellular Acld pool. In Figure 2, we have simulated the 

coupled dynamics of three such cells.  As it can be seen in Figure 2a, the cells oscillate at 

the same frequency but with different amplitudes and phases.  Gradually, the phase shift

disappeared, and in less than 20 minutes the dynamics of the cells were completely 

synchronized (Figure 2b).

2.3.2 Quorum sensing

Many bacteria synchronize the activation of particular functions by communicating 

their local cell density to each other through autoinducer (AI) molecules, an effect called 

“quorum sensing” (Fuqua1994). As the cell population increases, the AIs accumulate in 



the surroundings, eventually reaching a critical concentration causing the differential 

expression of certain sets of genes, e.g. genes involved in bioluminescence. Experiments 

have shown that several necessary processes to bacterial colonization and virulence such 

as biofilm formation, bioluminescence, type III secretion, and secretion of virulence 

factors are regulated via quorum sensing (Fuqua1996, McFallNgai2000, Miller2001, 

Hammer2003, Henke2004, Waters2005).

The machinery of the gene regulatory networks that produce the AIs, detect the AIs, 

and respond to the changes in AI concentration differs depending on the bacteria. Vibrio 

harveyi and Vibrio cholerae use sensors at the membrane to track changes in the AI 

concentration (Freeman2000, Miller2001, Miller2002, Mok2003, Henke2004), while the 

AIs diffuse through the membrane and form a complex with a particular protein 

necessary for gene activation in Vibrio fischeri and Pseudomonas aeruginosa

(Fuqua1994, Fuqua1996, Fuqua2002, Pesci1999, McKnight2000, Pearson1999). The 

latter type of quorum sensing bacteria will be the focus of this instructional example.

2.3.2.1 Quorum sensing model for Vibrio fischeri

We present a model of quorum sensing in Vibrio fischeri introduced by James et al. 

(James2000).  Vibrio fischeri is a gram-negative bioluminescent marine bacterium that

uses acyl-homoserine lactones as its AIs to directly control the luminescence (lux) operon 

(Eberhard1981, Engebrecht1983, Engebrecht1984, Fuqua2001). The model tracks the 

concentration of AIs (A), the concentration of the protein LuxR that the AI forms a

complex with (R), and the concentration of the AI-protein complex (C) (see Figure 3).

The first interaction, AI forming a complex with LuxR, is described by the binding rate 



constant k1, and the complex can break apart with dissociation rate constant k2, giving the 

reactions:

CRA k→+ 1 and   RAC k +→ 2 .

The resulting three differential equations for A, R, and C are

dA
dt

= k2C − k1AR ,  ARkCk
dt
dR

12 −= ,  dC
dt

= k1AR − k2C .

Through binding to the lux box, the complex (C) is responsible for promoting the 

production of the lux operons, which include the genes responsible for light production, 

luxCDABEG, the gene responsible for producing the AI, luxI, and the gene that translates 

into the protein AI complexes with luxR. When the concentration of the complex is (low) 

high, the lux box is predominantly (un-)occupied. This is account for by including a term

lux box occupancy =
fC

1+ fC

where f is a proportionality constant.

Since the complex promotes the transcription of luxI and luxR, the rates of 

transcription are proportional to the lux box occupancy time. The model does not 

explicitly include the translation step of luxI and luxR into LuxI and LuxR, or the direct 

synthesis of the AI from LuxI. Instead, it is assumes these reactions to be integrated into 

an additional proportionality constant times the occupancy of the lux box.

LuxR synthesis rate= q fC
1+ fC

,        AI synthesis rate= p fC
1+ fC

The differential equations for A and R are thus updated to be:

dA
dt

= k2C + p fC
1+ fC

− k1AR



dR
dt

= k2C + q fC
1+ fC

− k1AR

dC
dt

= k1AR − k2C

The LuxR protein concentration is naturally reduced via enzymatic degradation and 

cellular volume changes from cell replication at a rate proportional to the LuxR 

concentration, and the chemically stable AIs freely diffuse through the cell membrane 

into the surrounding environment at a rate assumed to be proportional to the cellular AI 

concentration:

Degradation rate of LuxR = bR ,     Diffusion rate of AI = nA

Including this effect, the differential equations for A, R, and C then become:

dA
dt

= k2C + p fC
1+ fC

− k1AR − nA

dR
dt

= k2C + q fC
1+ fC

− k1AR − bR

dC
dt

= k1AR − k2C

Finally, an external concentration of AI (Aex) generated by a colony of bacteria can be 

added to the model by including a forward rate of diffusion of AI proportional to the 

external concentration. This only modifies the equation for A by adding an nAex:

dA
dt

= k2C + p fC
1+ fC

− k1AR − n(A − Aex )

2.3.2.2 Model analysis

To illustrate how the system of three coupled differential equations can exhibit 

quorum sensing behavior, we solve for the time series solutions of the differential 



equations for two values of Aex (Aex = 1 m/l3 and Aex = 50 m/l3). The low value of Aex

corresponds to the low cell-density limit where the external concentration of AIs from 

surrounding bacteria is minimal. Figure 4 shows the cellular concentrations of AI 

(dashed line) and the LuxR-AI complex (sold line). Both molecules are given initial 

concentrations of 1 m/l3.  The system quickly reaches steady-state conditions where the

internal AI concentration matches the external one, and the concentration of the LuxR-AI 

complex drops to a minimal value.  Since the LuxR-AI complex is responsible for 

activating luminescence, this situation corresponds to a dark colony.  Upon increasing the 

concentration of external AI (corresponding to high cell density), the LuxR-AI complex 

is able to reach a considerably larger steady-state concentration. Since the threshold 

concentration of the LuxR-AI complex necessary for light production is not known, the 

results in Figure 5 serve as an illustration of the cell’s response to a large increase in 

external AI concentration.

Using the model for quorum sensing in Vibrio fischeri proposed by James et al. 

(James2000), it is clear that this relatively simple set of coupled differential equations is 

capable of exhibiting a quorum sensing-like response when the concentration of external 

AI is changed. Other models exist that include more interactions in the genetic regulatory 

network (Muller2006, Kuttler2007). There are also models of Pseudomonas aeruginosa, 

a similar quorum sensing bacteria to Vibrio fischeri (Ward2001, Dockery2001).

2.4 Tools



ODEs can easily be solved by general scientific and engineering software such as 

matlab (www.mathworks.com) and mathematica (www.wolfram.com).  Many programs 

have been developed primarily to facilitate the modeling of dynamical systems:  

• Virtual cell (www.vcell.org)

• E Cell (www.e-cell.org)

• CellDesigner (www.celldesigner.org)

• Karyote (biodynamics.indiana.edu/CellModeling)

• MathSBML (www.sbml.org/Software/MathSBML).  

There are also a number of databases, such as www.siliconcell.net, were metabolic 

models are stored.

3. Individual-based modeling

3.1 Background

The history of individual-based modeling, also often called agent-based modeling 

(ABM), goes back to the late 1940s and early 1950s work by John von Neumann where 

he invented cellular automata (CA).  CA are most frequently simulated on finite grids, 

and the state of a grid-cell’s neighbors is used to determine its state for the next time step.  

In a simple 1D example, only two states (0 or 1) are available per cell, and the CA update 

rules would then determine for which of the 8 possible states a cell would change its

value.  

Individual-based models (IbMs) were suggested in the 1980s as a possible method for 

studying social systems on a computer.  Differently from the CA, the IbMs are typically 

not occupying all available grid cells and, in fact, need not be based on a grid at all.  



However, similarly to the CA, each entity carries with it a pre-destined set of rules that it 

acts upon after polling its local environment.  Due to the rapid increase in computational 

power for desktop PCs, IbMs started receiving serious attention in the 1990s (Wimpenny, 

1997; Kreft, 2001; Pizarro, 2001).

In the following, we will enlist the IbM framework to model microbial communities, 

and the agents will represent individual cells, being either bacteria, archaea, or single-cell 

eukaryotes. Contrasting the IbM framework with that of the rate equation approach, we 

quickly see that the chasm in representation can be bridged.  For instance, one can 

imagine that the internal rule-set for an agent is based on monitoring the output of a set of 

rate equations, such as growth, internal ATP concentration, or auto-inducer concentration 

in quorum sensing.  However, the computational cost of including a highly detailed 

internal description should be measured carefully against the feasible number of 

simultaneous agents and the duration of the simulation.

3.2 Theory and Methodology

When a system is comprised of many agents whose interactions generate system-level 

dynamics that cannot be explained by their individual properties (emergent behavior), 

individual-based modeling is well suited for simulating the system function.  Typically, 

IbMs of microbial communities are simulated on 2D or 3D grids where a single entity 

occupies a grid-cell.  Before taking on the task of designing or implementing an IbM, it is 

necessary to clearly define the contents and scope of the project.  Important questions to 

clarify include:

• How many species will exist in the system?



• Will the microbes be allowed to move?

• What will be the inputs and outputs of each microbe?

• How much will a microbe eat before it divides?

• After cell division, how will the (now) two cells be placed?

• Which boundary conditions will be chosen (e.g. hard walls, nutrient reservoir)?

• Which metabolic strategies, e.g. dormant or growing maximally, may be used?

• How will the microbes interact; through competition for nutrients or through more 

direct channels, e.g. quorum sensing, physical contact, or production of toxins?

Additionally, it is necessary to decide how nutrients and other chemicals will move in the 

system, as well as the shape and function of the system boundaries.  In the modeling of 

biofilms, nutrient levels are sometimes chosen to be fixed along one of the system 

boundaries to simulate the presence of a reservoir, while a different boundary is chosen to 

be impermeable to both nutrients and cells, emulating a hard surface such as a wall.

The basis for any IbM is the set of “behavioral” rules that each microbe may follow.  

For every time-increment, each microbe is visited and taken through the list of possible 

rules.  In simple cases the rule set is deterministic: whenever the local conditions are 

identical, a given outcome is repeated.  For more sophisticated models, the microbe may 

choose among the available strategies with a probability that depends on past history, the 

local environment, or both.  While implemented behavioral rules frequently have been 

discrete in nature, this is not a requirement of the modeling approach.  For instance, a 

common choice in calculating the growth of a microbe from one time-point to the next is 

to increment an “energy storage” variable with a fixed amount.  However, one may 



alternatively describe the growth (rate) using Michaelis-Menten, or even double-

saturation kinetics (Xavier 2007).  

It is in the selection of behavioral rules that IbM intersects with game theory.  In 

simple IbMs, the rule set only allows for interactions through the use of nutrients or 

occupation of space (e.g. a microbe is not allowed to grow when adjacent grid-cells are 

occupied).  However, microbes may cooperate or compete through the production of 

chemical signals (quorum sensing) and toxins (West 2006).  It is relatively 

straightforward to include a wide variety of competitive or cooperative behaviors in the 

behavioral rules.  For instance, we can generate a class of cooperative microbes simply 

by lowering their possible growth rate while they produce a beneficial by-product, such 

as extracellular polymeric substance (EPS) or a molecule that aids the function of a 

different microbial species.  The competing behavioral class of “cheaters” will be 

allowed to avoid this burden (e.g. no EPS production) and can grow at the maximal rate.  

In such a scenario, it is possible either for the cooperators or the cheaters to have the 

highest fitness, depending on growth conditions and the structure of the environment

(Kreft, 2004; Xavier, 2007).

When designing an IbM, it is also necessary to carefully consider how the nutrients 

are distributed.  In the simplest models, nutrient concentrations are chosen to be constant, 

while more complex realizations include discretized differential equations for the

diffusive nutrient transport.  These hybrid methods, combining IbM dynamics for the 

microbes with differential equations for the nutrients, have given highly detailed insights 

into the dynamics of biofilms (see e.g. Chambless 2006 for example of 3D simulation).  

In these approaches, it is beneficial to utilize the difference in time-scales between 



diffusion (fast process) and microbial activities (slow process) such as growth.  The 

following two-step iterative process is frequently used: (1) calculate the quasi-steady 

state solution for the diffusive molecules, and (2) use the identified local concentrations 

as input for the microbial IbM dynamics. Assuming that both microbial locations and 

their uptake and production rates are fixed, we may easily find the steady-state solution 

of the diffusion equations of, e.g. oxygen, glucose, and an auto-inducer.  Note that, the 

microbes may act as both sinks (consumption of nutrient) and sources (production of 

signaling molecules).  

Alternatively, we may consider the nutrients and other chemicals as discrete particles 

that conduct independent random walks, e.g equal probability of moving to an adjacent 

site, and multiple nutrient particles are allowed to occupy the same grid-site.  In this 

representation, the effective diffusion coefficient is determined by the number of steps in 

the walk.  Fluid flow may be incorporated by biasing the direction of the random walk.  

Note that one must conduct the random walk step for all particles before updating the 

microbial states.

3.3 Example

In a simple, deterministic 2D system where the only interaction between the microbes 

is competition over nutrients and available space, the rule set is:

1) Nutrient uptake. 

a) If amount of nutrient E>e available in current and adjacent grid-cells, eat amount 

e. Add to internal energy storage: wàw+e (and appropriately subtract from E).

b) If not, maintenance cost m<e is deducted: wàw-m



2) Duplication or sporulation.

a) If at least one adjacent grid-cell is empty and internal energy storage w>W (the 

duplication threshold) generate copy and set wà(w-W )/2 in both microbes.

b) If internal energy storage w<T, the sporulation threshold, microbe is inactive until 

nutrient level in current grid-cell E>e.

Naturally, we choose WT << . In this simple example, we are inhibiting the movement 

of nutrient particles, similar to microbial growth on an agar plate.  By allowing for the 

movement of nutrients, either as a random walk of discrete particles or by differential 

equations (diffusion), this simple IbM can be changed to describe biofilm growth in a 

liquid medium. Typical initial conditions start from either a single or multiple identical 

microbes in the middle of the grid or along a boundary.  Multiple species are simply 

included by e.g. changing the uptake amount from being a global constant e, to become 

species dependent es.

We can create cooperative behavior by modifying e.g. behavioral rule 1.a as follows: 

1.a’) If amount of nutrient E>e available in current and adjacent grid-cells and 

majority of adjacent grid-cells occupied, eat amount e’=e-δ>0.  If majority of 

adjacent grid-cells empty, eat e’=e. Add to internal energy storage: wàw+e’

(and appropriately subtract from E).

This straightforward rule change forces microbes to behave altruistically by taking less of 

the nutrients when in a dense neighborhood, and thus, improve sharing of resources.

Figure 6 shows a snapshot of a biofilm simulation of two species competing over the 

same food source.  In addition to rules 1 and 2, we have included nutrient diffusion using 

the random walk approach.  It is not surprising that the fast growing species (dark gray) is 



dominating over the slower growing species (light gray) in the major bloom: the further 

away from the bottom layer (the wall) an individual is, the more nutrients are available 

and it can grow faster.   

3.4 Tools

Several consortia have made available general purpose IbM models.  The most 

popular open-source implementations are Swarm (www.swarm.org) and Netlogo 

(ccl.northwestern.edu/netlogo).  A listing of available IbM software packages is available 

at www.swarm.org/index.php?title=Tools_for_Agent-Based_Modelling.  Programs 

specifically tailored to microbial communities include BacSim (Kreft 2001), which is 

based on the Swarm toolkit, and BacLAB (Hunt, 2003).

4.  Population Dynamics

4.1 Background

Population dynamics in community-level modeling comprises a coarse-grained 

approach compared to the two previous sections, where the focus has shifted from 

individual microbe to the species as basic unit.  Population-level interactions between 

different species (macroscopic) can naturally be considered as effective per-capita rates 

resulting from the interacting individuals (microscopic). Thus, population interactions

naturally arise from shared ecological niches and diverse metabolic capabilities of the 

constituent microbes. 

A conventional way of classifying pair-wise population interactions is based on their 

effects on growth (see Table 2). The presence of one species may be beneficial [+], 



detrimental [-] or neutral [0] to the other. In fact, all possible combinations of effects are 

observed in nature, both the symmetric (reciprocal) interactions of mutualism [++] and

competition [--], and the asymmetric cases of ammensalism [0-], commensalism [0+], 

predator-prey or parasitism [+-]. However, this scheme does not reflect the microscopic 

origin of interactions. Simple abstractions of an interaction may be insufficient to 

quantitative analyses, and it is important to carefully consider the microscopic origin of 

interactions. We also note that these classification schemes constitute an idealization: In 

practice, the behavior of a mixed community is likely the combination of multiple 

interactions, often with opposing effects.  A situation that is common to microbial 

communities consists of two (or more) species in a mixed population that compete for the 

same nutrient source while, at the same time, being physiologically coupled in a 

commensal way. Thus, we should not expect that the resulting dynamics will be 

predictable by “effective” uniform interaction models.

Population level descriptions provide insights that are otherwise overlooked in 

microscopic studies. Microbial communities from compost, the bovine rumen, acid mine 

drainage, and hot springs are just a few among recently studied systems that will benefit 

from quantitative modeling. 

4.2 Theory and Methodology

4.2.1 Lotka-Volterra model and its deterministic variations

Since the early modeling of the predator-prey ecosystem, the Lotka-Volterra (LV) 

model (Lotka 1925, Volterra 1926) has been the de facto standard template for modeling 

mixed populations. Though LV had originally aimed at modeling the specific case of 



predator-prey system, its current usage has been expanded past the predator-prey setting

to include positive interactions. In its simplest version, the population size of a prey (x1) 

and its predator (x2) satisfy the following set of nonlinear differential equations.

,        

Here α and δ are the growth and decay rates for the prey and predator populations, 

unaffected by the negative (predation) inter-species interaction. The coefficients β and γ 

represents the strength of the detrimental and beneficial effects on prey and predator

population owing to the predation. Due to the particular functional form of these 

equations, the Jacobian of this system has purely imaginary eigenvalues, regardless of the 

parameter combinations. Consequently, the two-species LV system has sustained 

oscillatory behavior with a characteristic frequency of παδ 2/ . 

The exponential growth of prey population has been a target for modifications. The 

original LV assumes no resource limits, which oftentimes is unrealistic. To include the 

resource-mediated intra-species competition, we require a negative term that would 

counterbalance exponential growth. Thus introduced is the logistic growth rate, 

, where r is the per-capita growth rate and K is the carrying capacity of the 

ecosystem for species i. The modified LV with the logistic growth with finite carrying 

capacity for the prey population is now

which has the two nontrivial (excluding x1= x2 = 0) steady states (Figure 7):  



The first solution corresponds to predator extinction and prey proliferation, which is 

stable as long as (the extinction threshold).  Stable population coexistence 

(second solution) is possible only when K > Kc. Linear stability analysis further shows 

that coexistence is either a stable node or a focus, and no oscillatory behavior is expected 

unless the carrying capacity diverges (Mobilia et al. 2007).

We may generalize the LV population model (which we will refer to as GLV) to 

include competitive interactions among species by adding an extra, negative term 

following the spirit of mass-action:

where n is the total number of interacting species. The diagonal elements Aii > 0 can be 

identified (to a multiplicative constant) with the inverse of the carrying capacity of

species i. The off-diagonal elements Aij > 0 represent the strength of j’s negative effect on 

i, which is related to the distance between the two species in niche space. 

Finally, a unified scheme for the community interactions is obtained by removing the 

positivity constraint on the off-diagonal elements Aij in GLV. The majority of studies on 

mutualistic interactions have been using this representation as a template framework.

However, all eigenvalues of the interaction matrix must have positive real parts for the 

system to be stable. High-diversity communities tend to become unstable as the 

interaction network becomes more complex, reminiscent of the work by May in the 

1970s (May 1973, 1976). Recent studies have revisited this problem and found potential



positive effects of complexity: High-diversity, stable LV systems arise if the interaction 

network evolves flexibility through adaptive behavior (Kondoh 2003, Ackland & 

Gallager 2004).

4.2.2 Effects of spatial heterogeneity

In general, microbial populations are spatially heterogeneous and not well-stirred 

“bioreactors” as assumed in the original LV work. Even marine microbes aggregate in 

the search for food using chemotaxis. We may introduce spatial structure into the 

deterministic framework by using an embedding space, where the individuals move 

around in the search for food and shelter. Interaction effects are no longer instantaneous, 

leading to time delays that stabilizes the community (Murray 2002, Collet & Eckmann 

1990). A natural extension of LV to allow for the random movement of cells is by way 

of diffusion terms, turning the LV into the coupled partial differential equations

where Di is the diffusion coefficient of species i. For the case of two-species competition, 

this coupled reaction-diffusion system is known to contain propagating wave-front

solutions in 1D of the form xi(t) = f(xi -vit) that interpolate between the two steady states 

identified above. Convergence to the steady state monotonically or with oscillations 

depends on the choice of rate parameters (Murray 2002).

4.2.3 Stochastic modeling



Randomness is a defining character of population processes, often diverting the

dynamics from deterministic predictions.  Depending on the origin of the “noise,”

population stochasticity may be classified by the following categories:

• Within-individual variability (“demographic stochasticity”),

• Cell-to-cell variability and age structure,

• Spatial heterogeneity (quenched or annealed),

• Temporal fluctuation of environment.

The first two categories stem from the random timing of birth-death events and the 

discrete nature of individuals. These factors play a lesser role as the population grows in 

size, but may still have significant local effects. In fact, local extinctions commonly occur

in nature, which is consistent with observations in stochastic simulations. The latter two 

categories are extrinsic in origin and can be described in terms of quenched or annealed 

noise.  Note that, contrary to intrinsic noise, there is no constraint on the noise amplitude 

or temporal correlations. Overall, the different sources of noise work together in real 

ecosystems, and interesting behaviors emerges from their combinatorial effects (Kussel 

& Leibler 2005, Thattai & van Oudenaarden 2004). Given a non-interacting single 

population with a discrete phenotypic distribution, the time-evolution of species ni can be 

described by the following matrix equation:

where E(t) is the random discrete variable representing the environment at time t. ri(E(t)) 

is the environment-dependent fitness of phenotype i, and the matrix elements Tij(E(t)) are

transition probabilities for an individual to switch from the j-th tothe i-th phenotype. 



Interestingly, maximal growth occurs when the phenotypic switching rate is similar to 

that of environmental fluctuations, and random switching outperforms responsive 

switching if environmental changes are slow or mostly predictable. 

4.3 Example

4.3.1 Marine phage community

Recent work on marine phage communities demonstrate how the general framework 

of LV can be improved, and the importance of investigating microscopic origins of 

population growth. Hoffmann and colleagues (Hoffmann et. al, 2007) studied the 

interaction of marine phages (predator) and their host microbes (prey) by modeling the 

multispecies community as a simple predator-prey model. This can be justified since the

phage-host interaction is highly specific and the dominant population effectively is 

representative of the overall community (Thingstad 2005).

The key observation from this approach is that the observed cooperativity is casued

by spatio-temporally non-uniform nutrient condition ascribed to a colloid-type organic 

detritus called “marine snow.” The marine snow enhances aggregation of microbes and 

their predators, generating a positive feedback loop:  The clustering around discrete food 

sources leads to locally high concentrations of lysed host cells, that further attract more 

predators. The consequence is a superlinear dependence of predation rate in the phage 

population, represented as a quadratic interaction in the phage density:

The population dynamics predicted by this model follow experimental data closely.   



4.3.2 Identification of unknown species interactions

Intra- and inter-species interactions among microbes are mainly responsible for the 

ripening process in spreadable cheeses. A recent study used the population dynamics

approach to identify interactions in a spreadable cheese bacteria-eukaryote community

composed of six bacteria and three yeast species (Mounier et. al., 2008). The bacterial 

population behavior could be grouped into two quasi-species, resulting in a five-species 

model system. Using the GLV formulation as a starting point, entries in the interaction 

matrix A were selected to give simulated population dynamics that agreed with 

measurements.  The identified possible realizations of A were further narrowed down 

through a species-removal study: a single quasi-species was removed at a time, and 

population dynamics for the remaining species were measured. As a result, the web of 

interaction between the five groups could be identified (see Figure 8). Considering the 

experimental difficulties in resolving interspecies interactions in strongly interacting

communities, the GLV modeling approach provides a useful first step.

4.4 Tools

4.4.1 General-purpose ODE solver

The SBML ODE solver library (SOSlib) is a programming library for formula 

representation to construct ordinary differential equation (ODE) systems, their Jacobian 

matrix, a parameter dependency matrix and other derivatives in the Systems Biology 

Markup Language (SBML). SOSlib provides efficient interfaces to well-established 

methods in theoretical chemistry, biology and systems theory



http://www.tbi.univie.ac.at/~raim/odeSolver

4.4.2 Stochastic simulator

Dizzy is a  software for stochastic chemical relations simulation. It provides a model 

definition, implementation of several stochastic and deterministic algorithms, a graphical 

display of a model. It is a standard free software written in Java and is supported on 

Windows XP, Fedora Core 1 Linux, and Macintosh.

http://magnet.systemsbiology.net/software/Dizzy
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Tables

Model differential equations

*Vm=volume of the medium

Table 1. List of differential equations for a simplified model of glycolysis (Wolf 2000)



Interaction mode Reciprocity Cell-cell
direct contact

Sign of 
interactions

Mutualism Y N [++]
Competition Y N [--]

Commensalism N N [+0]
Ammensalism N N [-0]

Predator-prey, parasitism N Y [+-]

Table 2. Overview of species-level interaction classes in population based modeling.



Figure captions

Figure 1. Schematic diagram of anaerobic glycolysis.  Glc=glucose, TRP=triose-

phosphates.  v1=hexokinase & PFK, v2=aldolase, v3=glycerol-3-phosphate 

dehydrogenase & glycerol kinase, v4=GAPDH, v5=PGK, v6=ATPase, 

v7=phosphoglycerate mutase & enolase & pyruvate kinase, v8=pyruvate decarboxylase, 

v9=alcohol dehydrogenase, v10=degradation of Acld. 



Figure 2. Coupled dynamics of glycolysis in 3 cells with identical kinetic capabilities 

but different starting metabolite concentrations.  a) Oscillating concentration of NADH.  

The oscillation frequency is the same for all three cells while the starting amplitudes 

(Am) and phases differ (AmA>AmB>AmC). b) Amplitude differences in NADH 

oscillations between two pairs of cells (A-B and B-C).  Time course is represented by 

shading (early=white, late=black).



Figure 3.  Schematic of quorum sensing network used by Vibrio fischeri to regulate 

luminescence. AI (A) binds the protein LuxR (R) to form complex (C) with a forward 

rate of k1 and a dissociation rate of k2, and diffusion of AI through cellular membrane 

with constant n. LuxR is degraded at a rate b. The C complex occupies the lux box 

proportional to fC / (1 + fC) and promotes the transcription of luxR, luxI, and 

luxCDABEG with rate q. AI is produced at rate p from LuxI. 



Figure 4. Low cell density response of LuxR-AI complex (solid line) and AI (dotted line)

concentrations. Starting concentrations are 1 m/l3 for LuxR-AI, AI, and AIext.  The system 

quickly reaches its steady-state values where LuxR-AI complex concentration is minimal

and the AI concentration matches AIext.  The other parameters are: k1 = 25 (l3 m-1 t-1), k2 = 

10 (t-1), n = 10 (t-1), b = 10 (t-1), p = 5 (m l-3 t-1), q = 2.5 (m l-3 t-1), and f = 0.25 (l3 m-1).

Figure 5. High cell density response of LuxR-AI complex (solid line) and AI (dotted 

line). Starting concentrations are 1 m/l3 for LuxR-AI, AI, and 50 m/l3 for AIext.  The 

system quickly reaches its steady-state values where LuxR-AI complex concentration can 

initiate light production and the AI concentration matches AIext. The other parameters are 

as in Figure 4.



Figure 6. Simulated biofilm of two competing species growing on an impermeable 

boundary.  Fast growing (dark gray) dominates over slower growing (light gray).  

Substrate gradients are generated by random walks of discrete nutrient packets.



Figure 7. Competitive Lotka-Volterra (LV) dynamics.  (a) Time evolution of the 

population size from Eq. (2). All the systems start n1(0) = n2(0) = 0.1 (arbitrary units) and 

the time scale is set in units of 1/δ (~predator’s lifespan). Rate parameters α=2.3, β=3.1, 

γ=1.2, and the carrying capacity K is varied from 0.8 to 20 (Kc = 0.833). The mixed

population state is stable for K > Kc. (b) Trajectories in n1-n2 space shows the attractor for 

different carrying capacities.

Figure 8. Interaction network identified by generalized LV (GLV) analysis. Arrows and 

blunt ends stand for positive and negative interactions, respectively. D, Debaryomyces 

hansenii; Y, Yarrowia lipolytica; G, Geotrichumcandidum; L, Leucobacter sp.; C, group 

containing Arthrobacter arilaitensis, Hafnia alvei, Corynebacterium casei,

Brevibacterium aurantiacum, and Staphylococcus xylosus.


